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Abstract

Oral mucositis is often induced in patients receiving cancer chemotherapy treatment. It has been reported that oral
mucositis can reduce quality of life, as well as increasing the incidence of mortality. The participation of reactive oxygen
species (ROS) in the pathogenesis of oral mucositis is well known, but no report has actually demonstrated the presence of
ROS. Thus, the purpose of this study was thus to demonstrate the involvement of ROS and the alteration of the redox state
in oral mucositis using an in vivo L-band electron spin resonance (ESR) technique. An oral mucositis animal model induced
by treatment of 5-fluorouracil with 10% acetic acid in hamster cheek pouch was used. Lipid peroxidation was measured as
the level of malondialdehyde determined by the thiobarbituric acid reaction. The rate constants of the signal decay of
nitroxyl compounds using in vivo L-band ESR were calculated from the signal decay curves. Firstly, we established the oral
mucositis animal model induced by treatment of 5-fluorouracil with acetic acid in hamster cheek pouch. An increased level
of lipid peroxidation in oral mucositis was found by measuring malondialdehyde using isolated hamster cheek pouch ulcer.
In addition, as a result of in vivo L-band ESR measurements using our model animals, the decay rate constants of carbamoyl-
PROXYL, which is a reagent for detecting the redox balance in tissue, were decreased. These results suggest that a redox
imbalance might occur by excessive generation of ROS at an early stage of oral mucositis and the consumption of large
quantities of antioxidants including glutathione in the locality of oral mucositis. These findings support the presence of ROS
involved in the pathogenesis of oral mucositis with anti-cancer therapy, and is useful for the development of novel
therapies drugs for oral mucositis.
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Introduction

Currently, 5-fluorouracil (5-FU) is the most effective agent in the

treatment of gastrointestinal cancer [1]. However, oral mucositis is

frequently associated with the use of radiation and the adminis-

tration of anti-cancer drugs, such as 5-FU, for the treatment of

head and neck cancer [2]. In general, this oral mucositis can be

painful, limiting oral intake, and acting as portals of entry for

indigenous oral microbial flora [3]. In another study, difficulty

eating and drinking was reported in nearly 90% of patients and

resultant weight loss in approximately 85%. One-third also had

difficulty with speech. Such adverse effects can significantly affect

patient weight, mood, and daily functioning [4]. Mucositis is also

associated with increased morbidity and mortality in addition to

significant additional hospital costs [5,6].

The pathogenesis of oral mucositis appears to involve five

biological phases: (i) initiation, (ii) primary damage response, (iii)

signal amplification, (iv) ulceration, and (v) healing [2]. Radiation

and chemotherapy lead to the generation of reactive oxygen

species (ROS), which in turn activate several signaling pathways in

the submucosa and epithelium [7,8]. In particular, non-DNA

injury is initiated by a variety of mechanisms, some of which occur

via the generation of ROS and the involvement of superoxide

(O2
?2), which is one of the ROS suggested to be involved in the

pathogenesis of the onset and progression of oral mucositis [2,9].

Recent evidence has indicated that ROS such as O2
?2 can also

cause oxidative stress by a variety of different mechanisms: lipid

peroxidation, apoptosis, DNA damage, protein damage including

hyaluronic acid and proteoglycans, and oxidation of pro-inflam-

matory cytokine release by monocytes and macrophages by

depleting intracellular thiol compounds and activating nuclear

factor kB [10–12]. For the treatment and prevention of oral

mucositis concurrent with radiation and chemotherapy for cancer,

it is very important to focus on ROS, while considering the above
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mechanisms. Therefore, many rational approaches including

enhanced healing, apoptosis reduction, cytokine reduction, and

the prevention of free radical DNA damage have been proposed to

manage oral mucositis [13–16]. Recently, several drugs such as

allopurinol, which inhibits the in vivo O2
?–generating system, and

O2
?2 dismutase mimetic M40403 have been investigated to treat

oral mucositis [17,18]. However, these strategies are based on the

assertion that the generation of O2
?2 is involved in the

pathogenesis of oral mucositis. In fact, no direct evidence clarifying

the existence of ROS including O2
?2 in oral mucositis has been

reported.

Nitroxyl radicals are very useful as spin probes for measuring

ROS distribution, oxidative stress, oxygen concentration and

redox metabolism by in vivo ESR in biological systems [19]. We

previously reported on the use of an electron spin resonance

(ESR)-based technique for the detection of free radical reactions in

biological systems [20–23]. It has been reported that nitroxyl

radicals, referred to as ‘nitroxyl spin probes’, lose their ESR signal

by rapidly reacting with O2
?– (k = 104–105 M21 s21) and HO?

(k.109 M21 s21) [24,25] in the presence of thiols or NAD(P)H

[25], as well as other radicals such as alkyl (k = 107–109 M21 s21)

[26] and lipid peroxyl radicals [27]. The signal decay rate of the

nitroxyl spin probe provides evidence of ROS generation and

changes in the redox status of biological systems [19,28]. Given

this background, the aim of the present study was to demonstrate

for the first time directly the presence of ROS and the alteration of

redox status involving ROS using in vivo ESR spectroscopy with

nitroxyl spin probe in 5-FU-induced oral mucositis in hamster

cheek pouch for the first time.

Materials and Methods

Animals
Four-week-old male Syrian golden hamsters were purchased

from Janan SLC, Inc. (Shizuoka, Japan). The animals were housed

in groups of three per cage in a room maintained under

standardized light (12:12 h light-dark cycle) and temperature

(2263uC) conditions with free access to food pellets and drinking

water. The animals were individually numbered using an ear

punch (Finger Loop Ear Punch; British Columbia, Canada) and

divided into 4 groups: Group 1, saline control; Group 2, acetic

acid control (oral mucositis model with 10% acetic acid alone);

Group 3, 5-FU administration; and Group 4, oral mucositis model

with 5-FU+acetic acid. The experimental protocol used in this

study was approved by the Committee on the Ethics of Animal

Experiments of Kanagawa Dental University (Permit Numbers:

258, 259, 503, 505, 506, 508–510) and accorded with the

guidelines of the US National Institutes of Health Guide for the

Care and Use of Laboratory Animals (NIH Publication No. 85-23,

revised 1985). All experiments were performed under sodium

pentobarbital anesthesia, and hamsters were euthanized prior to

tissue harvesting to minimize suffering.

Oral Mucositis Induction Protocol
The protocol for the induction of oral mucositis was modified

on the basis of a previously published protocol [29,30]. The 5-FU

group and the oral mucositis group were administered an

intraperitoneal injection of 5-fluorouracil (5-FU Injection

1000 mg; KYOWA KIRIN, Tokyo, Japan) on days 0 and 2 of

the experiment at a dose of 60 mg/kg body weight. On day 2,

under sodium pentobarbital (50 mg/kg, i.p.) anesthesia, the left

side cheek pouch of hamster was extended outside the oral cavity.

The central portion of the pouch was held with a 2661/20 needle

(NEORUSH; TERUMO CORPORATION, Tokyo, Japan) on

expanded polystyrene. Subsequently, a micro-syringe with a

29G61/20 needle (MyjectorH; TERUMO CORPORATION,

Tokyo, Japan) was used for the local injection of 10% acetic acid

solution (30 ml) under cheek pouch mucosa in the section held by

the needle in Groups 2 and 4. The cheek pouch was then returned

to the oral cavity, and the animals were returned to their cages. In

a similar manner, physiological saline was applied to the lesions in

the sham control group.

All animals were observed and weighed on days 0, 1, 2, 3, 4, 7,

9, 11, 14, and 16. For the purposes of observation (Fig. 1),

hamsters were anesthetized with sodium pentobarbital (50 mg/kg,

i.p.) and the left side cheek pouch was everted and a clinical

photograph of the oral mucositis was taken with a digital camera

(DSC-RX100; SONY CORPORATION, Tokyo, Japan). In each

photograph, a stainless ruler (TZ-1341; KOKUYO Co., Ltd.,

Osaka, Japan) was included to provide calibration of the mucositis

area measurement between images. A free computer program

(Image J; NIH, Washington DC, MD, USA) (http://rsbweb.nih.

gov/ij/, accessed on 21 May 2009) was used to measure the area

of mucositis as cm2 (Fig. 2).

Assay for Lipid Peroxidation of Oral Mucositis in Cheek
Pouch
On day 4, hamsters were anesthetized with sodium pentobar-

bital (50 mg/kg, i.p.), the cheek pouch was everted, and the

hamsters were killed by cervical dislocation immediately after

photographing. After killing the hamsters, the cheek pouch was

removed and these specimens were immediately frozen in liquid

nitrogen and fractured by applying pulsed pressure with Cryo-

Press (Microtec Co., Ltd., Chiba, Japan). Lipid peroxidation was

measured as the level of malondialdehyde (MDA) determined by

the thiobarbituric acid (TBA) reaction following the manufactur-

er’s instructions (TBARS Assay Kit; Cayman Chemical Company,

Ann Arbor, MI, USA) [31–33]. The absorbance was measured at

540 nm. The concentration of MDA is expressed as mM of MDA/

mg of protein.

In vivo L-band ESR Analysis
On day 4, we anesthetized the hamsters with pentobarbital as

well as performing the TBARS assay. The left side cheek pouch of

hamster was extended outside the oral cavity. The central portion

of the pouch was held with a 2961/20 needle (NEORUSH;
TERUMO CORPORATION, Tokyo, Japan) on 3 cm63 cm

expanded polystyrene. The solution of 140 mmol/l carbamoyl-

PROXYL (C-PROXYL) was injected into the cephalic vein

(10 mg/kg), and placed immediately in an L-band ESR

spectrometer (JES-RE-3L; JEOL, Tokyo, Japan) equipped with

a 4-window loop-gap resonator. The ESR spectra were repeatedly

measured in the left cheek pouch outside the oral cavity of the

hamster, beginning 15 sec after injection as described previously

[20,21,34]. ESR spectra were analyzed using the Win-Rad data

analysis system (Radical Research, Tokyo, Japan). The rate

constants of the signal decay of nitroxyl were calculated from

the signal decay curves, which were determined from semi-

logarithmic plots of the peak heights of the ESR signal at a lower

magnetic field. All experiments were repeated a minimum of 5

times.

Statistical Analysis
Analysis of variance and multiple comparison tests using

Tukey’s method were applied to determine differences among

the 4 groups. Data are expressed as the mean 6 SD. Statistical

significance was set at P,0.05.

Alteration of the Redox State in Oral Mucositis
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Results

Fig. 1 shows a photograph of oral mucositis induced by 5-FU

with acetic acid in hamster cheek pouch. In this model, the

combination of intraperitoneal injections of 5-FU and direct

treatment of 10% acetic acid on cheek pouch caused oral

mucositis on day 3. The area of oral mucositis peaked on day 4

with 5-FU+acetic acid, while it peaked on day 3 in the acetic acid

control group (Fig. 3A). Subsequently, the area of oral mucositis

became smaller in time-dependent manner and almost complete

recovered was observed on day 16. On the other hand, the

treatment of 10% acetic acid alone on cheek pouch also induced

oral mucositis, like the treatment of the 5-FU+acetic group, but the
maximum area was small in comparison with that in the 5-

FU+acetic group (Fig. 3A). However, intraperitoneal injection of

saline alone and 5-FU treatment alone did not induce oral

mucositis. The body weight of hamsters was significantly

decreased compared with that in the saline control treatment

group on the day after treatment of 5-FU with acetic acid (Fig. 3B).

Oxidative stress in the cellular environment results in the

formation of highly reactive and unstable lipid hydroperoxides.

Decomposition of the unstable peroxides derived from polyunsat-

urated fatty acids results in the formation of MDA, which can be

quantified colorimetrically following its controlled reaction with

TBA [31,33]. We analyzed the level of lipid peroxidation induced

in the hamster cheek pouch by the treatment of acetic acid alone

and 5-FU with acetic acid. The levels of lipid peroxidation were

significantly increased in the oral mucositis groups compared with

that in the saline control group (P,0.05) (Fig. 4). However, no

significant difference was recognized in the 5-FU alone group

compared with a saline control group.

C-PROXYL is a suitable spin probe agent for the study of free

radical reactions in several tissues by in vivo L-band ESR detection

[22,35,36]. Using this method, we succeeded in measuring

oxidative stress as a decay rate constant of C-PROXYL in oral

mucositis of hamster cheek pouch (Fig. 5). The signal of C-

PROXYL decreased in a time-dependent manner in all experi-

mental groups. In particular, even though the decay rate constant

of C-PROXYL in the acetic acid control group was significantly

higher than in the saline control group, that in the 5-FU with

acetic acid group was lower than those in the other groups

(P,0.05) (Fig. 5).

Discussion

The goal of this study was to elucidate directly change of the

redox state related to the involvement of ROS in oral mucositis.

To date, suitable experimental animal models of oral mucositis

have hardly been reported. However, a buccal mucosal ulcer

model induced by acetic acid, as described in several reports, has

been suggested to be effective for healing studies involving oral

mucositis [37,38]. In addition, we used the hamster cheek pouch,

which is suitable for extending tissue outside the oral cavity in vivo,

a procedure that was necessary to measure ROS in oral mucositis

directly in this study (Fig. 1). As a result, the largest area of oral

mucositis was induced by treatment with 5-FU+acetic acid in the

hamster cheek pouch; it had almost recovered 16 days after the

onset of symptoms (Fig. 1 and Fig. 3A). In terms of the weight of

hamsters that developed oral mucositis, there were few differences

in comparison with the saline control group during the experi-

mental period. Therefore, it was suggested that this 5-FU with

acetic acid oral mucositis model might be optimal for direct

analysis of the mechanism of oral mucositis as a complication of

cancer chemotherapy.

MDA has been widely adopted for a sensitive assay of lipid

peroxidation in animal tissues [39]. In this study, we demonstrated

the increased peroxidation of lipid membrane and the production

of MDA as one of the end products using TBARS assay for

analyzing the oxidative stress induced by ROS in association with

5-FU plus acetic acid in cheek pouch (Fig. 4). It is well known that

antitumor agents such as mitomycin C and adriamycin are

associated with ROS, which have cytotoxic effects on tumor cells

Figure 1. The photograph of oral mucositis in hamster cheek pouch induced by 5-fluorouracil plus acetic acid. (A) Healthy hamster
cheek pouch. (B) Oral mucositis appearance on day 4. (C) After treatment with 5-fluorouracil (60 mg/kg, i.p.) with 10% acetic acid on day 16.
doi:10.1371/journal.pone.0082834.g001

Figure 2. Assessment of the oral mucositis area using a free
computer program (Image J, NIH, USA).
doi:10.1371/journal.pone.0082834.g002

Alteration of the Redox State in Oral Mucositis
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[40,41]. In addition, 5-FU is also recognized to generate ROS in

biological systems, which play an important role in cell death

mechanisms [42]. In the early stage of inflammation, including in

oral mucositis, it has been reported that there is a large amount of

ROS such as O2
?2 from neutrophils migrating to the site of

inflammation [43]. However, these ROS can be scavenged by

antioxidant enzymes such as superoxide dismutase (SOD) and

catalase, and antioxidants such as ascorbic acid or the glutathione

in vivo defense system, resulting in less oxidative damage [44].

Therefore, as a significant increase of MDA levels was observed in

oral mucositis groups (acetic acid control and 5-FU+acetic acid), it
was suggested that ROS might have been generated above their

typical concentration in vivo in the locality of the oral mucositis.

Furthermore, a significant increase of MDA level by 5-FU

treatment alone was not recognized. From this result, rodents

including hamsters may be able to maintain their redox balance

for ascorbate biosynthesis via a biological mechanism, unlike

humans.

We subsequently measured ROS directly using an in vivo ESR

technique outside the oral cavity of hamster cheek pouch affected

Figure 3. Efficacy of oral mucositis in the hamster model induced by 5-fluorouracil (5-FU) plus acetic acid. A, Changes in oral mucositis
area for each treatment group were calculated and plotted over the course of the study. B, Changes in body weight for each treatment group were
calculated and plotted over the course of the study. Hamsters received two intraperitoneal injections of 5-FU or saline on days 0 and 2. They were
also injected with 10% acetic acid or saline in the left side cheek pouch on day 2. Each point represents the mean 6 SD (n = 8–10).
doi:10.1371/journal.pone.0082834.g003

Figure 4. Malondialdehyde (MDA) concentration in the isolated cheek pouch with oral mucositis. MDA concentration was assessed by
TBARS assay and normalized by the amount of protein. The data are expressed as mean 6 SD in all groups (n = 8–11). Statistical analysis was
conducted using Tukey’s method. Experimental conditions are described in Materials and Methods. *P,0.05 vs. saline control, {P,0.05 vs. 5-FU.
doi:10.1371/journal.pone.0082834.g004

Alteration of the Redox State in Oral Mucositis
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by oral mucositis. The decay rate constant of C-PROXYL was

significantly increased in the group treated with acetic acid alone.

The pharmacokinetics of a nitroxyl compound (C-PROXYL)

using in vivo L-band ESR was first reported by Berliner and Wan

[45]. We also demonstrated that the decay rate constant of C-

PROXYL was increased in association with oxidative stress by

generating ROS [22,23,34]. Therefore, it was suggested that the

treatment with acetic acid increased the generation of ROS in a

local oral mucositis site. On the other hand, the decay rate

constant of C-PROXYL was significant decreased in the group

treated with 5-FU with acetic acid, as shown in Fig. 5. The result

of this study is the opposite of these previous reports. The animal

models that we used in the previously reported studies were

chronic oxidation stress models with ROS. The model of oral

mucositis caused by 5-FU plus acetic acid in this study involves a

particularly severe acute inflammatory response compared with an

acetic acid control (Fig. 3A). Excess ROS generation in acute

inflammation induces enhancement of the activity of some

antioxidants, such as SOD, in local inflammation sites [36,46].

However, the reducing activity of the organism might be

decreased, resulting in consumption of an excess of antioxidants

accompanying inflammation. In fact, several studies have reported

that the decay rate constant of nitroxyl radicals including C-

PROXYL was inhibited; these results were attributed to a

decrease in the reducing capacity of the organism with excessive

inflammatory responses [28,47,48]. The cellular reducing activity

against nitroxyl radicals is maintained by intracellular antioxida-

tive molecules including glutathione (GSH) and ascorbates,

especially by GSH [49,50]. GSH is also a key molecule in the

bio-reduction of nitroxide spin probes at the cellular or organelle

level. Therefore, the findings of this in vivo L-band ESR study with

treatment of 5-FU+acetic acid indicate the possibility that

intracellular antioxidants including GSH had been consumed

excessively in the locality of the oral mucositis. However, in terms

of oral mucositis in the acetic acid control, an increase of the decay

rate constant of C-PROXYL, such as nitroxide compounds, was

indicated, and ROS might be unlikely to generate excessive

intracellular antioxidant levels, despite an acute inflammatory

response. In addition, a decrease in antioxidant activity accom-

panying the generation of excess ROS might have induced redox

imbalance. These findings suggest the possibility of deterioration

in the pathology of oral mucositis in that the generation of ROS is

further increased by the administration of 5-FU. Hence, these

results constitute direct evidence of the presence of ROS at an

early stage of oral mucositis, as was previously reported.

Conclusion

In vivo L-band ESR is currently the only method to prove the

redox state directly in organisms, tissues, and cells. In this study,

we directly indicated the presence of ROS at the beginning of the

development of oral mucositis and the alteration of the redox state

of inflammation associated with ulcer. These results should

support approaches directed at ROS when treating oral mucositis

and should be useful for study of the development and

effectiveness of novel drug treatments in the future.
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